
Tcpreplay 3.x Manual (BETA)

Aaron Turner
http://tcpreplay.sourceforge.net/

August 7, 2005

Notice

This document is still in the process of being re-written due to the significant CLI and configuration file changes between versions 2.x and
3.x. For the definative source of configuration options, please see the tcpprep, tcprewrite, tcpreplay and tcpbridge man pages.

Overview

Tcpreplay is a suite of utilities for UNIX systems for editing and replaying network traffic which was previously captured by tools like
tcpdump and ethereal. The goal of tcpreplay is to provide the means for providing reliable and repeatible means for testing a variety of
network devices such as switches, router, firewalls, network intrusion detection and prevention systems (IDS and IPS).

Tcpreplay provides the ability to classify traffic as client or server, edit packets at layers 2-4 and replay the traffic at arbitrary speeds onto a
network for sniffing or through a device.

Some of the advantages of using tcpreplay over using “exploit code” are:

• Since tcpreplay emulates the victim and the attacker, you generally only need a tcpreplay box and the device under test (DUT)

• Tests can include background traffic of entire networks without the cost and effort of setting up dozens of hosts or costly emulators

• No need to have a “victim” host which needs to have the appropriate software installed, properly configured and rebuilt after compro-
mise

• Less chance that a virus or trojan might escape your network and wreak havoc on your systems

• Uses the open standard pcap file format for which dozens of command line and GUI utilities exist

• Tests are fully repeatable without a complex test harnesses or network configuration

• Tests can be replayed at arbitrary speeds

• Single command-line interface to learn and integrate into test harness

• You only need to audit tcpreplay, rather then each and every exploit individually

• Actively developed and supported by it’s author

Using this manual

The goal of this manual is to provide an idea of what tcpreplay and it’s utilities can do. It is not however intended to be a complete document
which covers every possible use case or situation. It is also very much a work in progress and is far from complete and has numerous errors
since a lot of things have changed since tcpreplay 2.x. It is expected that most of these issues will be ironed out before the offical 3.0 release
is made. You should keep in mind the following conventions when reading this document:

• Commands you should run from the command line are in monotype.

• Commands that should be run as root will have a ’#’ in front of them.

1

• Commands that should be run as an unprivelged user will have a ’$’ in front of them.

• Text that should be placed in a file is in monospace.

All of the applications shipped with tcpreplay support both short (a single dash followed by a single character) and long (two dashes followed
by multiple characters) arguments. For consistancy, this document uses the long option format. Please review the man pages for the short
argument equivalents.

Getting Help

If you still have a question after reading the Tcpreplay manual, man pages and FAQ, please contact the Tcpreplay-Users <tcpreplay-
users@lists.sourceforge.net> mailing list. Note that if you ask a question which has clearly been covered in either the manual or FAQ, you
will most likely be told to RTFM. Also, please try to explain your problem in detail. It is very difficult and fustrating to get requests from
people seeking help who only provide vague and incomplete information.

Corrections and additions to the manual

I’ve tried to keep this document up to date with the changes in tcpreplay, but occasionally I get too busy, make a mistake or just forget
something. If you find anything in this document which could be improved upon, please let me know.

Getting Tcpreplay working on your system

Getting the source code

The source code is available as a tarball on the tcpreplay homepage: http://tcpreplay.sourceforge.net/ I also encourage
users familiar with Subversion to try checking out the latest code as it often has additional features and bugfixes not yet found in the offical
releases.

$ svn checkout https://www.synfin.net:444/svn/tcpreplay/trunk tcpreplay

Requirements

1. Libnet1 1.1.x or better (1.1.3 fixes a checksum bug which effects tcprewrite)

2. Libpcap2 0.6.x or better (0.8.3 or better recommended)

3. To support the packet decoding feature you’ll need tcpdump3 binary installed.

4. You’ll also need a compatible operating system. Basically, any *NIX operating system should work. Linux, *BSD, Solaris, OS X and
others should all work. If you find any compatibility issues with any *NIX OS, please let me know.

Compiling Tcpreplay

Two easy steps:

$./configure && make
make install

There are some optional arguments which can be passed to the ’configure’ script which may help in cases where your libnet, libpcap or
tcpdump installation is not standard or if it can’t determine the correct network interface card to use for testing. I also recommend that for
beta code you specify --enable-debug to the configure script in case you find any bugs. If you find that configure isn’t completing correctly,
run: ./configure --help for more information.

You may also choose to run:
1http://www.packetfactory.net/libnet/
2http://www.tcpdump.org/
3http://www.tcpdump.org/

2

make test -i

• make test is just a series of sanity checks which try to find serious bugs (crashes) in tcpprep and tcpreplay.

• make test requires at least one properly configured network interface. If the configure script can’t guess what a valid interface is you
can specify it with the --with-testnic and --with-testnic2 arguments.

• If make test fails, often you can find details in test/test.log.

• OpenBSD’s make has a bug where it ignores the MAKEFLAGS variable in the Makefile, hence you’ll probably want to run: make -is
test instead.

Basic Tcpreplay Usage

Replaying the traffic

To replay a given pcap as it was captured all you need to do is specify the pcap file and the interface to send the traffic out interface ’eth0’:

tcpreplay --intf1=eth0 sample.pcap

Replaying at different speeds

You can also replay the traffic at different speeds then it was originally captured4.

Some examples:

• To replay traffic as quickly as possible:

tcpreplay --topspeed --intf1=eth0 sample.pcap

• To replay traffic at a rate of 10Mbps:

tcpreplay --mbps=10.0 --intf1=eth0 sample.pcap

• To replay traffic 7.3 times as fast as it was captured:

tcpreplay --multiplier=7.3 --intf1=eth0 sample.pcap

• To replay traffic at half-speed:

tcpreplay --multiplier=0.5 --intf1=eth0 sample.pcap

• To replay at 25 packets per second:

tcpreplay --pps=25 --intf1=eth0 sample.pcap

Replaying files multiple times

Using the loop flag you can specify that a pcap file will be sent two or more times5:

To replay the sample.pcap file 10 times:

tcpreplay --loop=10 --intf1=eth0 sample.pcap

To replay the sample.pcap an infinitely or until CTRL-C is pressed:

tcpreplay --loop=0 --intf1=eth0 sample.pcap

4Tcpreplay makes a "best" effort to replay traffic at the given rate, but due to limitations in hardware or the pcap file itself, it may not be possible. Capture files with only a
few packets in them are especially susceptible to inaccurately timing packets.

5Looping files resets internal counters which control the speed that the file is replayed. Also because the file has to be closed and re-opened, an added delay between the
last and first packet may occur.

3

Editing Packets

There are a number of ways you can edit packets stored in a pcap file:

1. Rewriting IP addresses so that they appear to be sent from and to different hosts

2. Fixing corrupted packets which were truncated by tcpdump or had bad checksums

3. Adding, removing or changing 802.1q VLAN tags on frames

4. Rewriting traffic so that it no longer uses “standard” TCP or UDP ports for the given service

5. Changing ethernet MAC addresses so that packets will be accepted by a router or firewall

Splitting Traffic

Anything other then just replaying packets at different speeds requires additional work and CPU cycles. While older versions of tcpreplay
allowed you to do many of these calculations while replaying traffic, it had a negative effect on the overall throughput and performance of
tcpreplay. Hence, these secondary features have been placed in two utilities:

• tcpprep - Used to categorize packets as originating from clients or servers

• tcprewrite - Used to edit packets

By using tcpprep and tcprewrite on a pcap file before sending it using tcpreplay, many possibilities open up. A few of these possibilities are:

Classifying client and servers with tcpprep

Both tcpreplay and tcprewrite process a single pcap file and generate output. Some features, such as rewriting IP or MAC addresses or
sending traffic out two different interfaces, require tcpreplay and tcprewrite to have some basic knowledge about which packets were sent by
“clients” and “servers”. Such classification is often rather arbitrary since for example a SMTP mail server both accepts inbound email (acts
as a server) and forwards mail to other mail servers (acts as a client). A webserver might accept inbound HTTP requests, but make client
connections to a SQL server.

To deal with this problem, tcpreplay comes with tcpprep which provides a number of manual and automatic classification methods which
cover a variety of situations.

Seperating clients and servers automatically

The easiest way to split clients and servers is to let tcpprep do the classification for you. Tcpprep examines the pcap file for TCP three-way
handshakes, DNS lookups and other types of traffic to figure out which IP’s mostly act like clients and which mostly act like servers. There
are four different automatic modes that you can choose between:

1. Bridge - This is the simplest mode. Each IP is individually tracked and ranked as a client or server. However, if any of the hosts do
not generate enough “client” or “server” traffic then tcpprep will abort complaining that it was unable to determine its classification.
This works best when clients and servers are intermixed on the same subnet.

2. Client - This works just like bridge mode, except that unknown hosts will be marked a client.

3. Server - This works just like bridge mode, except that unknown hosts will be marked a server.

4. Router - Hosts are first ranked as client or server. Then each host is placed in a subnet which is expanded until either all the unknown
hosts are included or the –maxmask is reached. This works best when clients and servers are on diffierent networks.

4

TCPPREP AUTOMATIC ROUTER MODE PROCESS
STEP 1: Categorize Clients, Servers and Unknowns STEP 2: Clients and Servers Expand Their Subnets to Include Unknowns

S

C

S

?

?

?

S

S

C

C

?

?

?

?

S

S

C

S

C

C

S

?

STEP 3: Unknowns Now Marked as Clients and Servers

C

S

C

C

S

S

CS

S

C

S

Classifying clients and servers in automatic mode is as easy as choosing a pcap file, an output “tcpprep cache file” and the mode to use:

$ tcpprep --auto=bridge --pcap=input.pcap --cachefile=input.cache

5

The above example would split traffic in bridge mode. Other modes are “router”, “client” and “server”. If you wish, you can override the
default 2:1 ratio of server vs. client traffic required to classify an IP as a server. If for example you wanted to require 3.5 times as much
server to client traffic you would specify it like:

$ tcpprep --auto=bridge --ratio=3.5 --pcap=input.pcap --cachefile=input.cache

Seperating clients and servers manually by subnet

Sometimes, you may not want to split traffic based on clients and servers. The alternative to using on of the automatic modes in this case,
is to use one of the manual modes. One manual way of differentiating between clients and servers using tcpprep is by specifying a list of
networks in CIDR notation which contain “servers”. Of course the specified CIDR netblocks don’t have to contain

Replaying on multiple interfaces

Tcpreplay can also split traffic so that each side of a connection is sent out a different interface6. In order to do this, tcpreplay needs the
name of the second interface (-j) and a way to split the traffic. Currently, there are two ways to split traffic:

1. -C = split traffic by source IP address which is specified in CIDR notation

2. -c = split traffic according to a tcpprep cachefile7

When splitting traffic, it is important to remember that traffic that matches the filter is sent out the primary interface (–intf1). In this case,
when splitting traffic by source IP address, you provide a list of networks in CIDR notation. For example:

• To send traffic from 10.0.0.0/8 out eth0 and everything else out eth1:

tcpreplay -C 10.0.0.0/8 --intf1=eth0 --intf2=eth1 sample.pcap

• To send traffic from 10.1.0.0/24 and 10.2.0.0/20 out eth0 and everything else out eth1:

tcpreplay -C 10.1.0.0/24,10.2.0.0/20 --intf1=eth0 --intf2=eth1 sample.pcap

• After using tcpprep to generate a cache file, you can use it to split traffic between two interfaces like this:

tcpreplay -c sample.cache --intf1=eth0 --intf2=eth1 sample.pcap

Selectively sending or dropping packets

Sometimes, you want to do some post-capture filtering of packets. Tcpreplay let’s you have some control over which packets get sent.

1. -M = disables sending of martian packets. By definition, martian packets have a source IP of 0.x.x.x, 127.x.x.x, or 255.x.x.x

2. -x = send packets which match a specific pattern

3. -X = send packets which do not match a specific pattern

Both -x and -X support a variety of pattern matching types. These types are specified by a single character, followed by a colon, followed
by the pattern. The following pattern matching types are available:

1. S - Source IP
Pattern is a comma delimited CIDR notation

2. D - Destination IP
Pattern is a comma delimited CIDR notation

6Note that you can also use the following options to split traffic into two files using -w and -W which are described later on in this FAQ.
7For information on generating tcpprep cache files, see the section on tcpprep.

6

3. B - Both source and destination IP must match
Pattern is a comma delimited CIDR notation

4. E - Either source or destination IP must match
Pattern is a comma delimited CIDR notation

5. P - A list of packet numbers from the pcap file.
Pattern is a series of numbers, separated by commas or dashes.

6. F - BPF syntax (same as used in tcpdump).
Filter must be quoted and is only supported with -x8.

Examples:

• To only send traffic that is too and from a host in 10.0.0.0/8:

tcpreplay -x B:10.0.0.0/8 --intf1 eth0 sample.pcap

• To not send traffic that is too or from a host in 10.0.0.0/8:

tcpreplay -X E:10.0.0.0/8 --intf1 eth0 sample.pcap

• To send every packet except the first 10 packets:

tcpreplay -X P:1-10 --intf1 eth0 sample.pcap

• To only send the first 50 packets followed by packets: 100, 150, 200 and 250:

tcpreplay -x P:1-50,100,150,200,250 --intf1 eth0 sample.pcap

• To only send TCP packets from 10.0.0.1:

tcpreplay -x F:’tcp and host 10.0.0.1’ --intf1 eth0 sample.pcap

Replaying only a few packets

Using the limit packets flag (-L) you can specify that tcpreplay will only send at most a specified number of packets.

• To send at most 100 packets:

tcpreplay --intf1 eth0 -L 100 sample.pcap

Skipping the first bytes in a pcap file

If you want to skip the beginning of a pcap file, you can use the offset flag (-o) to skip a specified number of bytes and start sending on the
next packet.

• To skip 15Kb into the pcap file and start sending packets from there:

tcpreplay --intf1=eth0 -o 15000 sample.pcap

8Note that if you want to send all the packets which do not match a bpf filter, all you have to do is negate the bpf filter. See the tcpdump(1) man page for more info.

7

Replaying packets which are bigger then the MTU

Occasionally, you might find yourself trying to replay a pcap file which contains packets which are larger then the MTU for the sending
interface. This might be due to the packets being captured on the loopback interface or on a 1000Mbps ethernet interface supporting “jumbo
frames”. I’ve even seen packets which are 1500 bytes but contain both an ethernet header and trailer which bumps the total frame size to
1518 which is 4 bytes too large.

By default, tcpreplay will skip these packets and not send them. Alternatively, you can specify the -T flag to truncate these packets to the
MTU and then send them. Of course this may invalidate your testing, but it has proven useful in certain situations. Also, when this feature
is enabled, tcpreplay will automatically recalculate the IP and TCP, UDP or ICMP checksums as needed. Example:

tcpreplay --intf1 eth0 -T sample.pcap

Writing packets to a file

It’s not always necessary to write packets to the network. Since tcpreplay has so many features which modify and select which packets are
sent, it is occasionally useful to save these changes to another pcap file for comparison. Rather then running a separate tcpdump process to
capture the packets, tcpreplay now supports output directly to a file. Example:

tcpreplay --intf1 eth0 -w output.pcap -F -u pad -x E:10.0.0.0/8 input1.pcap input2.pcap input3.pcap

Notice that specifying an interface is still required (required for various internal functions), but all the packets will be written to output.pcap.

You can also split traffic into two files by using -W <2nd output file>.

Extracting Application Data (Layer 7)

New to version 2.0 is the ability to extract the application layer data from the packets and write them to a file. In the man page, we call this
“data dump mode” which is enabled with -D. It’s important to specify -D before -w (and -W if you’re splitting data into two files). Example:

tcpreplay -D --intf1 eth0 -j eth0 -w clientdata -W serverdata -C 10.0.0.0/24 sample.pcap

Replaying Live Traffic

You can now replay live traffic sniffed on one network interface and replay it on another interface using the -S flag to indicate sniff mode
and the appropriate snaplen in bytes (0 denotes the entire packet). You can also enabling bi-directional traffic using the bridge mode flag: -b.

NOTE: It is critical for your sanity (and to prevent your murder by your network administrators) that the input interface and the output
interface be on separate networks and additionally that no other network devices (such as bridges, switches, routers, etc) be connecting the
two networks, else you will surely get a networkstorm the likes that have not been seen for years.

• Send packets sniffed on eth0 out eth1:

tcpreplay --intf1 eth1 -S 0 eth0

• Bridge two subnets connected to eth0 and eth1:

tcpreplay --intf1 eth0 --intf2=eth1 -b -S 0

By default, tcpreplay listens in promiscuous mode on the specified interface, however if you only want to send unicasts directed for the
local system and broadcasts, you can specify the “not_nosy” option in the configuration file or -n on the command line. Note that if another
program has already placed the interface in promiscuous mode, the -n flag will have no effect, so you may want to use the -x or -X argument
to limit packets.

8

Replaying Packet Capture Formats Other Than Libpcap

There are about as many different capture file formats as there are sniffers. In the interest of simplicity, tcpreplay only supports libpcap9. If
you would like to replay a file in one of these multitude of formats, the excellent open source tool Ethereal easily allows you to convert it to
libpcap. For instance, to convert a file in Sun’s snoop format to libpcap, issue the command:

tethereal -r blah.snoop -w blah.pcap

and replay the resulting file.

Replaying Client Traffic to a Server

A common question on the tcpreplay-users list is how does one replay the client side of a connection back to a server. Unfortunately,
tcpreplay doesn’t support this right now. The major problem concerns syncing up TCP Seq/Ack numbers which will be different. ICMP
also often contains IP header information which would need to be adjusted. About the only thing that could be easy to do is UDP, which
isn’t usually requested.

This is however a feature that we’re looking into implementing in the flowreplay utility. If you’re interested in helping work on this feature,
please contact us and we’d be more then happy to work with you. At this time however, we don’t have an ETA when this will be implemented,
so don’t bother asking.

Decoding Packets

If the tcpdump binary is installed on your system when tcpreplay is compiled, it will allow you to decode packets as they are sent without
running tcpdump in a separate window or worrying about it capturing packets which weren’t sent by tcpreplay.

• Decode packets as they are sent:

tcpreplay --intf1 eth0 -v sample.pcap

• Decode packets with the link level header:

tcpreplay --intf1 eth0 -v -A “-e” sample.pcap

• Fully decode and send one packet at a time:

tcpreplay --intf1 eth0 -v -1 -A “-s0 -evvvxX” sample.pcap

Note that tcpreplay automatically applies the -n flag to disable DNS lookups which would slow down tcpdump too much to make it effective.

Packet Editing

Rewriting MAC addresses

If you ever want to send traffic to another device on a switched LAN, you may need to change the destination MAC address of the packets.
Tcpreplay allows you to set the destination MAC for each interface independently using the -I and -J switches. As of version 2.1.0, you can
also specify the source MAC via -k and -K. Example:

• To send traffic out eth0 with a destination MAC of your router (00:00:01:02:03:04) and the source MAC of the server (00:20:30:40:50:60):

tcpreplay --intf1=eth0 -I 00:00:01:02:03:04 -k 00:20:30:40:50:60 sample.pcap

• To split traffic between internal (10.0.0.0/24) and external addresses and to send that traffic to the two interfaces of a firewall:

tcpreplay --intf1=eth0 --intf2=eth1 -I 00:01:00:00:AA:01 -J 00:01:00:00:AA:02 -C 10.0.0.0/24 sample.pcap

9Note that some versions of tcpreplay prior to 1.4 also supported the Solaris snoop format.

9

Randomizing IP addresses

Occasionally, it is necessary to have tcpreplay rewrite the source and destination IP addresses, yet maintain the client/server relationship.
Such a case might be having multiple copies of tcpreplay running at the same time using the same pcap file while trying to stress test firewall,
IDS or other stateful device. If you didn’t change the source and destination IP addresses, the device under test would get confused since it
would see multiple copies of the same connection occurring at the same time. In order to accomplish this, tcpreplay accepts a user specified
seed which is used to generate pseudo-random IP addresses. Also, when this feature is enabled, tcpreplay will automatically recalculate the
IP and TCP, UDP or ICMP checksums as needed. Example:

tcpreplay --intf1=eth0 -s 1239 sample.pcap &
tcpreplay --intf1=eth0 -s 76 sample.pcap &
tcpreplay --intf1=eth0 -s 239 sample.pcap &
tcpreplay --intf1=eth0 sample.pcap

Replaying (de)truncated packets

Occasionally, it is necessary to replay traffic which has been truncated by tcpdump. This occurs when the tcpdump snaplen is smaller
then the actual packet size. Since this will create problems for devices which are expecting a full-sized packet or attempting checksum
calculations, tcpreplay allows you to either pad the packet with zeros or reset the packet length in the headers to the actual packet size. In
either case, the IP and TCP, UDP or ICMP checksums are recalculated. Examples:

• Pad truncated packets:

tcpreplay --intf1=eth0 -u pad sample.pcap

• Rewrite packet header lengths to the actual packet size:

tcpreplay --intf1=eth0 -u trunc sample.pcap

Rewriting Layer 2 with -2

Starting in the 2.0.x branch, tcpreplay can replace the existing layer 2 header with one of your choosing. This is useful for when you want to
change the layer 2 header type or add a header for pcap files without one. Each pcap file tells the type of frame. Currently tcpreplay knows
how to deal with the following pcap(3) frame types:

• DLT_EN10MB
Replace existing 802.3/Ethernet II header

• DLT_RAW
Frame has no Layer 2 header, so we can add one.

• DLT_LINUX_SLL
Frame uses the Linux Cooked Socket header which is most commonly created with tcpdump -i any on a Linux system.

Tcpreplay accepts the new Layer 2 header as a string of comma separated hex values such as: 0xff,0xac,0x00,0x01,0xc0,0x64. Note that
the leading ’0x’ is not required.

Potential uses for this are to add a layer 2 header for DLT_RAW captures or add/remove ethernet tags or QoS features.

Rewriting DLT_LINUX_SLL (Linux Cooked Socket) captures

Tcpdump uses a special frame type to store captures created with the “-i any” argument. This frame type uses a custom 16 byte layer 2 header
which tracks which interface captured the packet and often the source MAC address of the original ethernet frame. Unfortunately, it never
stores the destination MAC address and it doesn’t store a source MAC when the packet is captured on the loopback interface. Normally,
tcpreplay can’t replay these pcap files because there isn’t enough information in the LINUX_SLL header to do so; however two options do
exist:

1. You can send these packets with -2 which will replace the LINUX_SLL header with an ethernet header of your choosing.

2. You can specify a destination MAC via -I and -J in which case tcpreplay will use the stored source MAC and create a new 802.3
Ethernet header. Note that if the pcap contains loopback packets, you will also need to specify -k and/or -K to specify the source MAC
as well or they will be skipped.

10

Rewriting IP Addresses (pseudo-NAT)

Pseudo-NAT allows the mapping of IP addresses in IPv4 and ARP packets from one subnet to another subnet of the same or different size.
This allows some or all the traffic sent to appear to come from a different IP subnet then it actually was captured on.

The mapping is done through a user specified translation table comprised of one or more source and destination network(s) in the format
of <srcnet>/<masklen>:<dstnet>/<masklen> deliminated by a comma. Mapping is done by matching IP addresses to the source subnet and
rewriting the most significant bits with the destination subnet. For example:

tcpreplay –intf1=eth0 -N 10.100.0.0/16:172.16.10.0/24 sample.pcap

would match any IP in the 10.100.0.0/16 subnet and rewrite it as if it came from or sent to the 172.16.10.0/24 subnet. Ie: 10.100.5.88 would
become 172.16.10.88 and 10.100.99.45 would become 172.16.10.45. But 10.150.7.44 would not be rewritten.

For any given IP address, the translation table is applied in order (so if there are multiple mappings, earlier maps take precedence) and occurs
only once per IP (no risk of an address getting rewritten a second time).

Advanced pseudo-NAT

Pseudo-NAT also works with traffic splitting (using two interfaces or output files) but with a few important differences. First you have the
option of specifying one or two pseudo-NAT tables. Using a single pseudo-NAT table means that the source and destination IP addresses
of both interfaces are rewritten using the same rules. Using two pseudo-NAT tables (specifying -N <Table1> -N <Table2>) will cause the
source and destination IP addresses to be rewritten differently for each interface using the following matrix:

Out Primary Interface Out Secondary Interface
Src IP Table 1 Table 2
Dest IP Table 2 Table 1

While seemingly a bit confusing, this feature provides a number of interesting possibilities such as the ability to rewrite the IP headers of
packets in the case where traffic is captured on the loopback interface (and the source and destination address is always 127.0.0.1) so that
tcpreplay can make it look like two different systems are talking to each other (you’ll probably also need to specify the source and destination
MAC addresses via -I, -J, -k and -K).

IP Endpoints

While pseudo-NAT provides a great deal of flexibility, it is often more complicated then is necessary for testing of inline devices. As a
simplier alternative, tcpreplay supports the concept of rewriting all traffic to so that it appears to be between two IP addresses:

tcpreplay --intf1=eth0 --intf2=eth1 -c sample.cache -e 10.0.0.1:10.1.1.1 sample.pcap

Will rewrite all the traffic so that it is between 10.0.0.1 and 10.1.1.1. The equivalent command using -N would be:

tcpreplay --intf1=eth0 --intf2=eth1 -c sample.cache -N 0.0.0.0/0:10.0.0.1 -N 0.0.0.0/0:10.1.1.1 sample.pcap

Unifying Dual-Outputs

Since a number of tcpreplay’s packet editing functions require splitting traffic between client and servers, one problem that may arrise is
needing to edit packets but still output to a single interface or file. The solution to this is to use the one output option -O which causes
packets to be processed as if they will be split between the interfaces/files, but then always go out the primary interface or file. Note that
even though only one interface/file will be written to, both -i and -j must be specified; although they can be the same physical interface.

tcpreplay --intf1=eth0 -j eth0 -O -c sample.cache -e 10.0.0.1:10.1.1.1 sample.pcap

Merging the output to a single file:

tcpreplay --intf1=eth0 -j eth0 -w rewrite.pcap -c sample.cache -e 10.0.0.1:10.1.1.1 sample.pcap

11

Tcpprep Usage

What is tcpprep?

Tcpreplay can send traffic out two network cards, however it requires the calculations be done in real-time. These calculations can be
expensive and can significantly reduce the throughput of tcpreplay.

Tcpprep is a libpcap pre-processor for tcpreplay which enables using two network cards to send traffic without the performance hit of doing
the calculations in real-time.

What are these ’modes’ tcpprep has?

Tcpprep has three basic modes which require the user to specify how to split traffic.

• CIDR (--cidr) mode requires the user to provide a list of networks. Any packet with a source IP in one of these networks gets sent out
the primary interface.

• Regex (--regex) mode requires the user to provide a regular expression. Any packet with a source IP matching the regex gets sent out
the primary interface.

• Port (--port) mode splits TCP/UDP traffic based on the destination port in the header. Normally, ports 0-1023 are considered “server”
ports and everything else a client port. You can create your own custom mapping file in the same format as /etc/services (see the
services(5) man page for details) by specifying --services <file>.

And four auto modes in which tcpprep decides how to split traffic. Auto modes are useful for when you don’t know much about the contents
of the dump file in question and you want to split traffic up based upon servers and clients.

• Auto/Router (--auto router) mode trys to find the largest network(s) that contain all the servers and no clients. Any unknown system
is automatically re-classified as servers if it’s inside the server network(s), otherwise it is classified as a client.

• Auto/Bridge (--auto bridge) mode makes the assumption that the clients and servers are horribly intermixed on the network and there’s
no way to subnet them. While this takes less processing time to create the cache file it is unable to deal with unknown systems.

• Auto/Client (--auto client) mode which works just like Auto/Bridge mode, except that any system it can’t figure out is treated like a
client.

• Auto/Server (--auto server) mode which works just like Auto/Bridge mode, except that any system it can’t figure out is treated like a
server.

Splitting traffic based upon IP address

Tcpprep supports the same CIDR mode that tcpreplay supports using the --cidr flag. Additionally, tcpprep also supports regex(7) regular
expressions to match source IP addresses using the --regex flag.

Auto Mode

How does Auto/Bridge mode work?

Tcpprep does an initial pass over the libpcap file to build a binary tree (one node per IP). For each IP, it keeps track of how many times it
was a client or server. It then does a second pass of the file using the data in the tree and the ratio to determine if an IP is a client or server. If
tcpprep is unable to determine the type (client or server) for each and every packet, then auto/bridge mode will fail. In these cases, it is best
to use a different auto mode.

How does Auto/Router mode work?

Tcpprep does the same first pass as Auto/Bridge mode. It then trys to convert the binary tree into a list of networks containing the servers.
Finally it uses the CIDR mode with the list of server networks in a second pass of the libpcap file. Unlike auto/bridge mode, auto/router
mode can always successfully split IP addresses into clients and servers.

12

Determining Clients and Servers

Tcpprep uses the following methods in auto/router and auto/bridge mode to determine if an IP address is a client or server:

• Client:

– TCP with Syn flag set

– UDP source/destination port 53 (DNS) without query flag set

– ICMP port unreachable (destination IP of packet)

• Server:

– TCP with Syn/Ack flag set

– UDP source/destination port 53 (DNS) with query flag set

– ICMP port unreachable (source IP of packet)

Client/Server ratio

Since a system may send traffic which would classify it as both a client and server, it’s necessary to be able to weigh the traffic. This is done
by specifying the client/server ratio (-R) which is by default set to 2.0. The ratio is the modifier to the number of client connections. Hence,
by default, client connections are valued twice as high as server connections.

Selectively sending/dropping packets

Tcpprep supports the same --include and --exclude options to selectively send or drop packets.

Using tcpprep cache files with tcpreplay

Just run:

tcpreplay --cachefile sample.cache --intf1=eth0 --intf2=eth1 sample.pcap

Commenting tcpprep cache files

In versions of tcpprep >= 2.1.0, you can specify a comment to be embeded in the tcpprep cache file. Comments are user specified and
automatically include the command line arguments passed to tcpprep.

tcpprep --comment “this is my comment” --pcap sample.pcap --cachefile sample.cache <other args>

Or for no user comment, but still embed the command arguments:

tcpprep --comment “” --pcap sample.pcap --cachefile sample.cache <other args>

You can then later on print out the comments by running:

tcpprep --print-comment sample.cache

13

Using Configuration Files

Each of the applications in the tcpreplay suite offers the choice of specifying configuration options in a config file in addition to the traditional
command line. Each command line option has an equivalent config file option which is listed in the man page. To specify the configuration
file you’d like to use, use the --load-opts=<filename> option.

Configuration files have one option per line, and lines beginning with the pound sign (#) are considered comments and ignored. An example
config file follows:

————BEGIN CONFIG FILE————–

send traffic out ’eth0’
intf1 eth0

loop 5 times
loop 5

send traffic 2x as fast
multiplier 2
————–END CONFIG FILE—————

You would then execute:

tcpreplay --load-opts=myconfigfile sample.pcap

You can also group configuration options for tcpprep, tcprewrite and tcpreplay in a single config file by placing section markers in the config
file. An example:

————BEGIN CONFIG FILE————–

cachefile=example.tcpprep

[TCPREPLAY]
intf1 eth0
intf2 eth1
topspeed

[TCPPREP]
auto=bridge
comment=’This cache file was created with a config file’
pcap=sample.pcap

[TCPREWRITE]
infile=sample.pcap
outfile=newsample.pcap
vlan=add
vlan-tag=44
endpoints=10.0.0.1:10.0.1.1

————END CONFIG FILE————–

Flowreplay Usage

While tcpreplay is a great way to test NIDS and firewalls, it can’t be used to test servers or HIDS since tcpreplay can’t connect to a service
running on a device. The solution to this problem is flowreplay which instead of sending packets at Layer 2 (ethernet header and up), it can
actually connect via TCP or UDP to server and then sends and receives data based upon a pcap capture file created with a tool like Ethereal
or tcpdump.

Please note that flowreplay is currently alpha quality and is missing a number of key features.

14

How flowreplay works

Put simply, flowreplay opens a socket connection to a service on a target system(s) and sends data over that socket based on the packet
capture. Flowreplay has no understanding of the application protocol (like HTTP or FTP) so it is somewhat limited in how it can deal with
complicated exchanges between client and server.

Some of these limitations are:

• Flowreplay only plays the client side10 of the connection.

• Flowreplay doesn’t understand the application protocols. Hence it can’t always deal with the case when the server sends a different
response then what was originally captured in the pcap file.

• Flowreplay only sends TCP and UDP traffic.

• Flowreplay doesn’t know about multi-flow protocols like FTP.

• Flowreplay can’t listen on a port and wait for a client to connect to it.

Running flowreplay

See the flowreplay(8) man page for details.

Tuning OS’s for high performance

Regardless of the size of physical memory, UNIX kernels will only allocate a static amount for network buffers. This includes packets sent
via the "raw" interface, like with tcpreplay. Most kernels will allow you to tweak the size of these buffers, drastically increasing performance
and accuracy.

NOTE: The following information is provided based upon our own experiences or the reported experiences of others. Depending on your
hardware and specific hardware, it may or may not work for you. It may even make your system horribly unstable, corrupt your harddrive,
or worse.

NOTE: Different operating systems, network card drivers, and even hardware can have an effect on the accuracy of packet timestamps that
tcpdump or other capture utilities generate. And as you know: garbage in, garbage out.

NOTE: If you have information on tuning the kernel of an operating system not listed here, please send it to me so I can include it.

Linux 2.4.x

The following is known to apply to the 2.4.x series of kernels. If anyone has any information regarding other kernel versions, please let us
know. By default Linux’s tcpreplay performance isn’t all that stellar. However, with a simple tweak, relatively decent performance can be
had on the right hardware. By default, Linux specifies a 64K buffer for sending packets. Increasing this buffer to about half a megabyte does
a good job:

echo 524287 >/proc/sys/net/core/wmem_default
echo 524287 >/proc/sys/net/core/wmem_max
echo 524287 >/proc/sys/net/core/rmem_max
echo 524287 >/proc/sys/net/core/rmem_default

On one system, we’ve seen a jump from 23.02 megabits/sec (5560 packets/sec) to 220.30 megabits/sec (53212 packets/sec) which is nearly
a 10x increase in performance. Depending on your system and capture file, different numbers may provide different results.

*BSD

*BSD systems typically allow you to specify the size of network buffers with the NMBCLUSTERS option in the kernel config file. Experi-
ment with different sizes to see which yields the best performance. See the options(4) man page for more details.

10Flowreplay assumes the first UDP packet on a given 4-tuple is the client

15

Required Libraries and Tools

Libpcap

As of tcpreplay v1.4, you’ll need to have libpcap installed on your system. As of v2.0, you’ll need at least version 0.6.0 or better, but I only
test our code with the latest version. Libpcap can be obtained on the tcpdump homepage11.

Libnet

Tcpreplay v1.3 is the last version to support the old libnet API (everything before 1.1.x). As of v1.4 you will need to use Libnet 1.1.0 or
better which can be obtained from the Libnet homepage12.

Tcpdump

As of 2.0, tcpreplay uses tcpdump (the binary, not code) to decode packets to STDOUT in a human readable (with practice) format as it
sends them. If you would like this feature, tcpdump must be installed on your system.

NOTE: The location of the tcpdump binary is hardcoded in tcpreplay at compile time. If tcpdump gets renamed or moved, the feature will
become disabled.

Other Resources

Other pcap tools available

Tools to capture network traffic or decode pcap files

• tcpdump
http://www.tcpdump.org/

• ethereal
http://www.ethereal.com/

• ettercap
http://ettercap.sourceforge.net/

Tools to edit pcap files

• tcpslice
Splits pcap files into smaller files
http://www.tcpdump.org/

• mergecap
Merges two pcap capture files into one
http://www.ethereal.com/

• editcap
Converts capture file formats (pcap, snoop, etc)
http://www.ethereal.com/

• netdude
GTK based pcap capture file editor. Allows editing most anything in the packet.
http://netdude.sourceforge.net/

11http://www.tcpdump.org/
12http://www.packetfactory.net/Projects/Libnet/

16

Other useful tools

• capinfo
Prints statistics and basic information about a pcap file
http://www.ethereal.com/

• text2pcap
Generates a pcap capture file from a hex dump
http://www.ethereal.com/

• tcpflow
Extracts and reassembles the data portion on a per-flow basis on live traffic or pcap capture files
http://www.circlemud.org/~jelson/software/tcpflow/

17

