1
0

queue.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. /* $OpenBSD: queue.h,v 1.22 2001/06/23 04:39:35 angelos Exp $ */
  2. /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
  3. /*
  4. * Copyright (c) 1991, 1993
  5. * The Regents of the University of California. All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. All advertising materials mentioning features or use of this software
  16. * must display the following acknowledgement:
  17. * This product includes software developed by the University of
  18. * California, Berkeley and its contributors.
  19. * 4. Neither the name of the University nor the names of its contributors
  20. * may be used to endorse or promote products derived from this software
  21. * without specific prior written permission.
  22. *
  23. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  24. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  25. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  26. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  27. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  28. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  29. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  30. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  31. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  32. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  33. * SUCH DAMAGE.
  34. *
  35. * @(#)queue.h 8.5 (Berkeley) 8/20/94
  36. */
  37. #pragma once
  38. /*
  39. * This file defines five types of data structures: singly-linked lists,
  40. * lists, simple queues, tail queues, and circular queues.
  41. *
  42. *
  43. * A singly-linked list is headed by a single forward pointer. The elements
  44. * are singly linked for minimum space and pointer manipulation overhead at
  45. * the expense of O(n) removal for arbitrary elements. New elements can be
  46. * added to the list after an existing element or at the head of the list.
  47. * Elements being removed from the head of the list should use the explicit
  48. * macro for this purpose for optimum efficiency. A singly-linked list may
  49. * only be traversed in the forward direction. Singly-linked lists are ideal
  50. * for applications with large datasets and few or no removals or for
  51. * implementing a LIFO queue.
  52. *
  53. * A list is headed by a single forward pointer (or an array of forward
  54. * pointers for a hash table header). The elements are doubly linked
  55. * so that an arbitrary element can be removed without a need to
  56. * traverse the list. New elements can be added to the list before
  57. * or after an existing element or at the head of the list. A list
  58. * may only be traversed in the forward direction.
  59. *
  60. * A simple queue is headed by a pair of pointers, one the head of the
  61. * list and the other to the tail of the list. The elements are singly
  62. * linked to save space, so elements can only be removed from the
  63. * head of the list. New elements can be added to the list before or after
  64. * an existing element, at the head of the list, or at the end of the
  65. * list. A simple queue may only be traversed in the forward direction.
  66. *
  67. * A tail queue is headed by a pair of pointers, one to the head of the
  68. * list and the other to the tail of the list. The elements are doubly
  69. * linked so that an arbitrary element can be removed without a need to
  70. * traverse the list. New elements can be added to the list before or
  71. * after an existing element, at the head of the list, or at the end of
  72. * the list. A tail queue may be traversed in either direction.
  73. *
  74. * A circle queue is headed by a pair of pointers, one to the head of the
  75. * list and the other to the tail of the list. The elements are doubly
  76. * linked so that an arbitrary element can be removed without a need to
  77. * traverse the list. New elements can be added to the list before or after
  78. * an existing element, at the head of the list, or at the end of the list.
  79. * A circle queue may be traversed in either direction, but has a more
  80. * complex end of list detection.
  81. *
  82. * For details on the use of these macros, see the queue(3) manual page.
  83. */
  84. /*
  85. * Singly-linked List definitions.
  86. */
  87. #define SLIST_HEAD(name, type) \
  88. struct name { \
  89. struct type *slh_first; /* first element */ \
  90. }
  91. #define SLIST_HEAD_INITIALIZER(head) \
  92. { NULL }
  93. #define SLIST_ENTRY(type) \
  94. struct { \
  95. struct type *sle_next; /* next element */ \
  96. }
  97. /*
  98. * Singly-linked List access methods.
  99. */
  100. #define SLIST_FIRST(head) ((head)->slh_first)
  101. #define SLIST_END(head) NULL
  102. #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
  103. #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
  104. #define SLIST_FOREACH(var, head, field) \
  105. for((var) = SLIST_FIRST(head); \
  106. (var) != SLIST_END(head); \
  107. (var) = SLIST_NEXT(var, field))
  108. /*
  109. * Singly-linked List functions.
  110. */
  111. #define SLIST_INIT(head) { \
  112. SLIST_FIRST(head) = SLIST_END(head); \
  113. }
  114. #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
  115. (elm)->field.sle_next = (slistelm)->field.sle_next; \
  116. (slistelm)->field.sle_next = (elm); \
  117. } while (0)
  118. #define SLIST_INSERT_HEAD(head, elm, field) do { \
  119. (elm)->field.sle_next = (head)->slh_first; \
  120. (head)->slh_first = (elm); \
  121. } while (0)
  122. #define SLIST_REMOVE_HEAD(head, field) do { \
  123. (head)->slh_first = (head)->slh_first->field.sle_next; \
  124. } while (0)
  125. #define SLIST_REMOVE(head, elm, type, field) do { \
  126. if ((head)->slh_first == (elm)) { \
  127. SLIST_REMOVE_HEAD((head), field); \
  128. } \
  129. else { \
  130. struct type *curelm = (head)->slh_first; \
  131. while( curelm->field.sle_next != (elm) ) \
  132. curelm = curelm->field.sle_next; \
  133. curelm->field.sle_next = \
  134. curelm->field.sle_next->field.sle_next; \
  135. } \
  136. } while (0)
  137. /*
  138. * List definitions.
  139. */
  140. #define LIST_HEAD(name, type) \
  141. struct name { \
  142. struct type *lh_first; /* first element */ \
  143. }
  144. #define LIST_HEAD_INITIALIZER(head) \
  145. { NULL }
  146. #define LIST_ENTRY(type) \
  147. struct { \
  148. struct type *le_next; /* next element */ \
  149. struct type **le_prev; /* address of previous next element */ \
  150. }
  151. /*
  152. * List access methods
  153. */
  154. #define LIST_FIRST(head) ((head)->lh_first)
  155. #define LIST_END(head) NULL
  156. #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
  157. #define LIST_NEXT(elm, field) ((elm)->field.le_next)
  158. #define LIST_FOREACH(var, head, field) \
  159. for((var) = LIST_FIRST(head); \
  160. (var)!= LIST_END(head); \
  161. (var) = LIST_NEXT(var, field))
  162. /*
  163. * List functions.
  164. */
  165. #define LIST_INIT(head) do { \
  166. LIST_FIRST(head) = LIST_END(head); \
  167. } while (0)
  168. #define LIST_INSERT_AFTER(listelm, elm, field) do { \
  169. if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
  170. (listelm)->field.le_next->field.le_prev = \
  171. &(elm)->field.le_next; \
  172. (listelm)->field.le_next = (elm); \
  173. (elm)->field.le_prev = &(listelm)->field.le_next; \
  174. } while (0)
  175. #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
  176. (elm)->field.le_prev = (listelm)->field.le_prev; \
  177. (elm)->field.le_next = (listelm); \
  178. *(listelm)->field.le_prev = (elm); \
  179. (listelm)->field.le_prev = &(elm)->field.le_next; \
  180. } while (0)
  181. #define LIST_INSERT_HEAD(head, elm, field) do { \
  182. if (((elm)->field.le_next = (head)->lh_first) != NULL) \
  183. (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  184. (head)->lh_first = (elm); \
  185. (elm)->field.le_prev = &(head)->lh_first; \
  186. } while (0)
  187. #define LIST_REMOVE(elm, field) do { \
  188. if ((elm)->field.le_next != NULL) \
  189. (elm)->field.le_next->field.le_prev = \
  190. (elm)->field.le_prev; \
  191. *(elm)->field.le_prev = (elm)->field.le_next; \
  192. } while (0)
  193. #define LIST_REPLACE(elm, elm2, field) do { \
  194. if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
  195. (elm2)->field.le_next->field.le_prev = \
  196. &(elm2)->field.le_next; \
  197. (elm2)->field.le_prev = (elm)->field.le_prev; \
  198. *(elm2)->field.le_prev = (elm2); \
  199. } while (0)
  200. /*
  201. * Simple queue definitions.
  202. */
  203. #define SIMPLEQ_HEAD(name, type) \
  204. struct name { \
  205. struct type *sqh_first; /* first element */ \
  206. struct type **sqh_last; /* addr of last next element */ \
  207. }
  208. #define SIMPLEQ_HEAD_INITIALIZER(head) \
  209. { NULL, &(head).sqh_first }
  210. #define SIMPLEQ_ENTRY(type) \
  211. struct { \
  212. struct type *sqe_next; /* next element */ \
  213. }
  214. /*
  215. * Simple queue access methods.
  216. */
  217. #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
  218. #define SIMPLEQ_END(head) NULL
  219. #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
  220. #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
  221. #define SIMPLEQ_FOREACH(var, head, field) \
  222. for((var) = SIMPLEQ_FIRST(head); \
  223. (var) != SIMPLEQ_END(head); \
  224. (var) = SIMPLEQ_NEXT(var, field))
  225. /*
  226. * Simple queue functions.
  227. */
  228. #define SIMPLEQ_INIT(head) do { \
  229. (head)->sqh_first = NULL; \
  230. (head)->sqh_last = &(head)->sqh_first; \
  231. } while (0)
  232. #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
  233. if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
  234. (head)->sqh_last = &(elm)->field.sqe_next; \
  235. (head)->sqh_first = (elm); \
  236. } while (0)
  237. #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
  238. (elm)->field.sqe_next = NULL; \
  239. *(head)->sqh_last = (elm); \
  240. (head)->sqh_last = &(elm)->field.sqe_next; \
  241. } while (0)
  242. #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  243. if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
  244. (head)->sqh_last = &(elm)->field.sqe_next; \
  245. (listelm)->field.sqe_next = (elm); \
  246. } while (0)
  247. #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do { \
  248. if (((head)->sqh_first = (elm)->field.sqe_next) == NULL) \
  249. (head)->sqh_last = &(head)->sqh_first; \
  250. } while (0)
  251. /*
  252. * Tail queue definitions.
  253. */
  254. #define TAILQ_HEAD(name, type) \
  255. struct name { \
  256. struct type *tqh_first; /* first element */ \
  257. struct type **tqh_last; /* addr of last next element */ \
  258. }
  259. #define TAILQ_HEAD_INITIALIZER(head) \
  260. { NULL, &(head).tqh_first }
  261. #define TAILQ_ENTRY(type) \
  262. struct { \
  263. struct type *tqe_next; /* next element */ \
  264. struct type **tqe_prev; /* address of previous next element */ \
  265. }
  266. /*
  267. * tail queue access methods
  268. */
  269. #define TAILQ_FIRST(head) ((head)->tqh_first)
  270. #define TAILQ_END(head) NULL
  271. #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
  272. #define TAILQ_LAST(head, headname) \
  273. (*(((struct headname *)((head)->tqh_last))->tqh_last))
  274. /* XXX */
  275. #define TAILQ_PREV(elm, headname, field) \
  276. (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  277. #define TAILQ_EMPTY(head) \
  278. (TAILQ_FIRST(head) == TAILQ_END(head))
  279. #define TAILQ_FOREACH(var, head, field) \
  280. for((var) = TAILQ_FIRST(head); \
  281. (var) != TAILQ_END(head); \
  282. (var) = TAILQ_NEXT(var, field))
  283. #define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
  284. for((var) = TAILQ_LAST(head, headname); \
  285. (var) != TAILQ_END(head); \
  286. (var) = TAILQ_PREV(var, headname, field))
  287. /*
  288. * Tail queue functions.
  289. */
  290. #define TAILQ_INIT(head) do { \
  291. (head)->tqh_first = NULL; \
  292. (head)->tqh_last = &(head)->tqh_first; \
  293. } while (0)
  294. #define TAILQ_COPY(dst, src, field) do { \
  295. *(dst) = *(src); \
  296. if (((dst)->tqh_first) != NULL) \
  297. (dst)->tqh_first->field.tqe_prev = &(dst)->tqh_first; \
  298. else \
  299. (dst)->tqh_last = &(dst)->tqh_first; \
  300. } while (0)
  301. #define TAILQ_INSERT_HEAD(head, elm, field) do { \
  302. if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
  303. (head)->tqh_first->field.tqe_prev = \
  304. &(elm)->field.tqe_next; \
  305. else \
  306. (head)->tqh_last = &(elm)->field.tqe_next; \
  307. (head)->tqh_first = (elm); \
  308. (elm)->field.tqe_prev = &(head)->tqh_first; \
  309. } while (0)
  310. #define TAILQ_INSERT_TAIL(head, elm, field) do { \
  311. (elm)->field.tqe_next = NULL; \
  312. (elm)->field.tqe_prev = (head)->tqh_last; \
  313. *(head)->tqh_last = (elm); \
  314. (head)->tqh_last = &(elm)->field.tqe_next; \
  315. } while (0)
  316. #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
  317. if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  318. (elm)->field.tqe_next->field.tqe_prev = \
  319. &(elm)->field.tqe_next; \
  320. else \
  321. (head)->tqh_last = &(elm)->field.tqe_next; \
  322. (listelm)->field.tqe_next = (elm); \
  323. (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
  324. } while (0)
  325. #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
  326. (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
  327. (elm)->field.tqe_next = (listelm); \
  328. *(listelm)->field.tqe_prev = (elm); \
  329. (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
  330. } while (0)
  331. #define TAILQ_REMOVE(head, elm, field) do { \
  332. if (((elm)->field.tqe_next) != NULL) \
  333. (elm)->field.tqe_next->field.tqe_prev = \
  334. (elm)->field.tqe_prev; \
  335. else \
  336. (head)->tqh_last = (elm)->field.tqe_prev; \
  337. *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
  338. } while (0)
  339. #define TAILQ_REPLACE(head, elm, elm2, field) do { \
  340. if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
  341. (elm2)->field.tqe_next->field.tqe_prev = \
  342. &(elm2)->field.tqe_next; \
  343. else \
  344. (head)->tqh_last = &(elm2)->field.tqe_next; \
  345. (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
  346. *(elm2)->field.tqe_prev = (elm2); \
  347. } while (0)
  348. /*
  349. * Circular queue definitions.
  350. */
  351. #define CIRCLEQ_HEAD(name, type) \
  352. struct name { \
  353. struct type *cqh_first; /* first element */ \
  354. struct type *cqh_last; /* last element */ \
  355. }
  356. #define CIRCLEQ_HEAD_INITIALIZER(head) \
  357. { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
  358. #define CIRCLEQ_ENTRY(type) \
  359. struct { \
  360. struct type *cqe_next; /* next element */ \
  361. struct type *cqe_prev; /* previous element */ \
  362. }
  363. /*
  364. * Circular queue access methods
  365. */
  366. #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
  367. #define CIRCLEQ_LAST(head) ((head)->cqh_last)
  368. #define CIRCLEQ_END(head) ((void *)(head))
  369. #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
  370. #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
  371. #define CIRCLEQ_EMPTY(head) \
  372. (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
  373. #define CIRCLEQ_FOREACH(var, head, field) \
  374. for((var) = CIRCLEQ_FIRST(head); \
  375. (var) != CIRCLEQ_END(head); \
  376. (var) = CIRCLEQ_NEXT(var, field))
  377. #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
  378. for((var) = CIRCLEQ_LAST(head); \
  379. (var) != CIRCLEQ_END(head); \
  380. (var) = CIRCLEQ_PREV(var, field))
  381. /*
  382. * Circular queue functions.
  383. */
  384. #define CIRCLEQ_INIT(head) do { \
  385. (head)->cqh_first = CIRCLEQ_END(head); \
  386. (head)->cqh_last = CIRCLEQ_END(head); \
  387. } while (0)
  388. #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  389. (elm)->field.cqe_next = (listelm)->field.cqe_next; \
  390. (elm)->field.cqe_prev = (listelm); \
  391. if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
  392. (head)->cqh_last = (elm); \
  393. else \
  394. (listelm)->field.cqe_next->field.cqe_prev = (elm); \
  395. (listelm)->field.cqe_next = (elm); \
  396. } while (0)
  397. #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
  398. (elm)->field.cqe_next = (listelm); \
  399. (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
  400. if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
  401. (head)->cqh_first = (elm); \
  402. else \
  403. (listelm)->field.cqe_prev->field.cqe_next = (elm); \
  404. (listelm)->field.cqe_prev = (elm); \
  405. } while (0)
  406. #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
  407. (elm)->field.cqe_next = (head)->cqh_first; \
  408. (elm)->field.cqe_prev = CIRCLEQ_END(head); \
  409. if ((head)->cqh_last == CIRCLEQ_END(head)) \
  410. (head)->cqh_last = (elm); \
  411. else \
  412. (head)->cqh_first->field.cqe_prev = (elm); \
  413. (head)->cqh_first = (elm); \
  414. } while (0)
  415. #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
  416. (elm)->field.cqe_next = CIRCLEQ_END(head); \
  417. (elm)->field.cqe_prev = (head)->cqh_last; \
  418. if ((head)->cqh_first == CIRCLEQ_END(head)) \
  419. (head)->cqh_first = (elm); \
  420. else \
  421. (head)->cqh_last->field.cqe_next = (elm); \
  422. (head)->cqh_last = (elm); \
  423. } while (0)
  424. #define CIRCLEQ_REMOVE(head, elm, field) do { \
  425. if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
  426. (head)->cqh_last = (elm)->field.cqe_prev; \
  427. else \
  428. (elm)->field.cqe_next->field.cqe_prev = \
  429. (elm)->field.cqe_prev; \
  430. if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
  431. (head)->cqh_first = (elm)->field.cqe_next; \
  432. else \
  433. (elm)->field.cqe_prev->field.cqe_next = \
  434. (elm)->field.cqe_next; \
  435. } while (0)
  436. #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
  437. if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
  438. CIRCLEQ_END(head)) \
  439. (head).cqh_last = (elm2); \
  440. else \
  441. (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
  442. if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
  443. CIRCLEQ_END(head)) \
  444. (head).cqh_first = (elm2); \
  445. else \
  446. (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
  447. } while (0)